Benchmarking the Molecular Mechanics-Valence Bond Method: Photophysics of Styrene and Indene

Michael J. Bearpark, ${ }^{\dagger}$ Fernando Bernardi, ${ }^{\ddagger}$ Massimo Olivucci, ${ }^{*,}{ }^{\ddagger}$ and Michael A. Robb** \dagger
Dipartimento di Chimica 'G. Ciamician' dell' Universitá di Bologna, Via Selmi 2, 40126 Bologna, Italy, and Department of Chemistry, King's College London, Strand, London WC2R 2LS, U.K.

Received: May 29, 1997; In Final Form: August 18, 1997^{\otimes}

Abstract

We have recently studied the excited states of the simplest aryl olefin styrene (Bearpark, M. J.; Olivucci, M.; Wilsey, S.; Bernardi, F.; Robb, M. A. J. Am. Chem. Soc. 1995, 117, 6944-6953) at the CASSCF / 4-31G level of theory. Full geometry optimization was shown to be essential in characterizing decay funnels for internal conversion (activated) and intersystem crossing (activationless) processes in this molecule. Here, we demonstrate that the CASSCF potential energy surfaces for styrene excited states can be simulated to an acceptable level of accuracy using a hybrid molecular mechanics-valence bond method (MMVB), which is many orders of magnitude less expensive computationally than CASSCF. The nonradiative deactivation of styrene and indene from S_{1} is compared. Because ethylene torsions are restricted, the mechanism proposed for styrene S_{1} decay (involving $S_{1} / T_{2}, T_{2} / T_{1}$, and T_{1} / S_{0} surface crossings) is much less likely to occur in indene. The existence of both S_{2} / S_{1} and S_{1} / S_{0} conical intersections is consistent with the lack of fluorescence observed after exciting indene to S_{2} in the gas phase and suggests that rearrangement reactions may be due to vibrationally excited $\mathrm{S}_{0}{ }^{*}$.

Introduction

The photophysics of aryl olefins such as styrene $\mathbf{1},{ }^{1}$ stilbene, ${ }^{2}$

1

2
α, ω-diphenylpolyenes, ${ }^{3}$ and tetraphenylethylene ${ }^{4}$ has been studied using time-resolved spectroscopic techniques, and differences in excited state behavior have emerged that cannot be accounted for using the standard model of decay at a perpendicular funnel. ${ }^{5}$ For example, the $\mathrm{S}_{1} \rightarrow \mathrm{~S}_{0}$ decay of cisstilbene can take place in less than $150 \mathrm{fs},{ }^{2 \mathrm{~b}}$ a factor of $\sim 1 \times$ 10^{5} faster than in styrene, ${ }^{1 \mathrm{~b}}$ which suggests that the respective potential energy surfaces have a markedly different topology.

Previous theoretical investigations-semiempirical ${ }^{6}$ and ab initio ${ }^{7}$-were limited by the fact that full geometry optimization of critical points on excited-state potential energy surfaces could not be carried out. Recent CASSCF work has demonstrated the importance of relaxing geometric constraints, ${ }^{8}$ particularly in the search for unavoided surface crossings (conical intersections ${ }^{9}$) at which decay can be fully efficient. ${ }^{9 \mathrm{~m}}$ For example, calculations for the H_{4} system ${ }^{10}$ anticipated the location of $\mathrm{S}_{1} /$ S_{0} surface crossings in ethylene + ethylene (rhomboidal geometry ${ }^{8, \mathrm{~b}}$) and butadiene (twisted perpendicular geometry ${ }^{8 d}$). Decay at a pericyclic minimum had previously been assumed, ${ }^{11}$ although the energy gap at such a geometry in butadiene is ~ 70 kcal mol^{-1}.

In the case of styrene ${ }^{1,12-18}$ we have recently demonstrated ${ }^{8 i}$ that changes in bonding within the benzene ring following excitation cannot be neglected, ${ }^{5}$ as the two mechanisms for S_{1}

[^0]
SCHEME 1

decay set out in Scheme 1 (where 1a, 1b, 1g, 1h, and 1m refer to optimized geometries of Figure 1 that we shall discuss subsequently) show. The lowest energy pathway to efficient internal conversion (IC) is via an $\mathrm{S}_{1} / \mathrm{S}_{0}$ conical intersection that results from a distortion of the benzene ring alone ${ }^{8 \mathrm{~h}}$ (Scheme 1 , left). Decay at this point is an activated process; a vibrational excess energy of $\sim 3000 \mathrm{~cm}^{-1}$ is required, the same as that for the "channel 3", which precludes S_{1} fluorescence in benzene. ${ }^{19}$ No cis-trans isomerization is detected experimentally at these energies. ${ }^{12 a}$ Alternatively (Scheme 1, right), with little vibrational excess energy, intersystem crossing (ISC) ${ }^{1,13}$ competes with fluorescence ${ }^{14}$ because S_{1} and T_{2} are approximately degenerate in the region of the S_{1} planar minimum. Decay from S_{1} to T_{2} is followed by fast T_{2} / T_{1} IC, leading to ISC in the region of the twisted minimum on T_{1} where S_{0} is approximately degenerate and cis-trans isomerization can occur. In addition, adiabatic cis-trans isomerization can take place on S_{1} at intermediate excess energies, but IC at a twisted minimum ${ }^{5}$ (not shown in Scheme 1) is unlikely because the $S_{1} \rightarrow S_{0}$ energy gap is so large ($\sim 70 \mathrm{kcal} \mathrm{mol}^{-18 \mathrm{i}}$).

Full geometry optimization at the CASSCF/4-31G level of theory was essential in characterizing the structures along both

Figure 1. Styrene: relaxed MMVB planar singlet structures on S_{0} (1a), $S_{1}(\mathbf{1 b})$, and $S_{2}(\mathbf{1 c})$. All bond lengths are in angstroms. CASSCF/ 4-31G measurements are from ref 8 i in parentheses. Energies are in Table 1.
reaction paths for styrene ${ }^{8 i}$ shown in Scheme 1. Ethylene torsion without ring relaxation was insufficient (cf. ref 1). However, such calculations are not yet practical for aryl olefins with two or more aromatic rings because of the large number of electrons that must be correlated. For this reason, we have developed the molecular mechanics-valence bond (MMVB) method, ${ }^{20}$ which can be used to simulate CASSCF/4-31G calculations for covalent states of conjugated hydrocarbons inexpensively. MMVB has previously been used in conjunction with CASSCF to model the decay dynamics of benzene, ${ }^{19}$ fulvene, ${ }^{8 \mathrm{k}}$ and azulene ${ }^{8 j}$ and to predict the existence of a benzene-like conical intersection in [18]annulene. ${ }^{81}$ In this paper, the aim is to show that the topology of the covalent excited states of styrene determined with MMVB and CASSCF is the same and that the mechanisms for excited-state decay (Scheme $1^{8 \mathrm{i}}$) are reproduced quite well from MMVB calculations alone. MMVB is therefore a useful tool for predicting the behavior of the excited states of larger aryl olefins, where CASSCF calculations are presently impractical. As an illustration, we use MMVB here to contrast the behavior of the excited states of styrene and indene $\mathbf{2}^{21-25}$ in which the additional $-\mathrm{CH}_{2}-$ group hinders ethylene torsion. The consequences of this constraint for the decay of S_{1} indene are evaluated.

Computational Details

MMVB 20 is a hybrid method that uses the MM2 potential ${ }^{26}$ to describe an inert molecular σ-framework. Active electronsthose involved in conjugation and new σ-bond formation-are represented by a Heisenberg Hamiltonian ${ }^{27}$ in the space of neutral valence bond configurations. Because of this, MMVB can only describe covalent states, which for styrene means that the twisted ionic minimum labeled \mathbf{k} in ref 8 i cannot be considered here. This intermediate is not directly involved in S_{1} decay ${ }^{1,7 b, 8 i}$ but may be responsible for the dual fluorescence of styrene that can be observed. ${ }^{12}$ Ionic contributions are not neglected completely in MMVB; their effect is included by virtue of the parametrization against CASSCF computations. ${ }^{20}$ The S_{1} / S_{0} gap for the covalent twisted minimum labeled \mathbf{f} in ref 8 i may nevertheless be overestimated.

A general set of molecular VB parameters (derived from CASSCF/4-31G calculations) are presently available for $\mathrm{sp}^{2 /}$ sp^{3} carbon atoms. Energies and analytical gradients can be calculated for the ground and valence excited states of systems with up to 24 carbon active sites. ${ }^{20 b}$ Such computations take a few seconds for styrene and indene (with 8 active sites) on current RISC workstations. Minima on conical intersections ${ }^{9}$ are optimized using the algorithm described in ref 28 b. In the case of a singlet-triplet crossing, the intersection space ${ }^{91}$ has the dimension $(n-1)$, since the derivative coupling is zero between states of different spin multiplicity. The branching space (in which initial motion on the lower state will take place) is therefore one-dimensional ${ }^{20 b, 8 i}$ in this case.

We consider two mechanisms for radiationless decay in this paper. When real surface crossings exist and are accessible, the Landau-Zener model ${ }^{\text {9h }}$ provides a semiclassical model for fast radiationless decay. By "accessible", we mean that there is a reaction coordinate with a sufficiently low-energy barrier that leads from the initial excited-state geometry to the crossing region. In azulene, ${ }^{8 \mathrm{j}}$ for example, the initial in-plane motion on S_{1} is strongly directed toward an S_{1} / S_{0} intersection and there is no intervening transition structure. Radiationless decay at such a crossing is consistent with the observed S_{1} lifetime of $\ll 1 \mathrm{ps} .{ }^{32}$ If surface crossings are not present, or are present but not easily accessible, the process of radiationless decay may be better described as the transformation of electronic energy into a manifold of vibronic states associated with the lower electronic state. This process is governed by the density of states and Franck-Condon factors according to the Fermi golden rule formalism. As the energy gap gets larger the density of states gets larger but the Franck-Condon factors become unfavorable.

As shown by Desouter-Lecomte and Lorquet, ${ }^{9 \mathrm{p}}$ the probability of radiationless decay is given as

$$
\begin{equation*}
P=\exp [-(\pi / 4) \xi] \tag{1}
\end{equation*}
$$

where ξ is the Massey parameter given as

$$
\begin{equation*}
\xi=\frac{\Delta E(q)}{\frac{h}{2 \pi}|\dot{\mathbf{q}}||g(\mathbf{q})|} \tag{2}
\end{equation*}
$$

where \mathbf{q} is a vector of nuclear displacement coordinates. The term $g(\mathbf{q})$ is the nonadiabatic coupling matrix element defined as

$$
\begin{equation*}
g(\mathbf{q})=\left\langle\Psi_{1} \left\lvert\, \frac{\partial \Psi_{2}}{\partial \mathbf{q}}\right.\right\rangle \tag{3}
\end{equation*}
$$

while $|\dot{q}|$ is the magnitude of the velocity along the reaction path \mathbf{q} and ΔE is the energy gap between the two states Ψ_{1} and Ψ_{2}. Unless ΔE is less than a few $\mathrm{kJ} \mathrm{mol}^{-1}$, the decay probability predicted in this model ${ }^{9 \mathrm{~h}}$ is vanishing small. However, as we approach a point where the surfaces actually cross, the decay probability becomes unity. If real crossing points exist and are accessible (see ref 8 for many examples), decay at these points should predominate over the transformation of electronic to vibrational energy via the Fermi golden rule formalism when an energy gap is present. Associated with this process the energy gap law (see p 76 of ref $9 r$), which for internal conversion has the form

$$
\begin{equation*}
k_{\mathrm{IC}} \cong 10^{13} \exp \left\{-4.5 \Delta E_{\mathrm{S}_{1}-\mathrm{S}_{0}}\right\} \tag{4}
\end{equation*}
$$

and typical IC rates for aromatic hydrocarbons are found to be $10^{5}-10^{6} \mathrm{~s}^{-1}$ (ref $9 \mathrm{~s}, \mathrm{p} 130$).

TABLE 1: Styrene MMVB Energies/ $\boldsymbol{E}_{\mathrm{h}}$ (Top Line) at MMVB Optimized Geometries ${ }^{a}$

structure	S_{0}	T_{1}	T_{2}	S_{1}	S_{2}
1a, M, ${ }^{\text {b }} \mathrm{S}_{0}$	-0.44270	-0.35747	-0.29075	-0.28656	-0.21719
	-93.3	-39.9	2.0		48.2
	(-104.7)	(-28.5)	(-2.9)	(5.6)	(46.2)
1b, M, S_{1}	-0.43501	-0.36025	-0.29504	-0.29394	
	-88.5	-41.6	$\begin{aligned} & -0.7 \\ & (-4.8) \end{aligned}$	$\begin{aligned} & 0.0 \\ & (0.0) \end{aligned}$	
1c, M, S_{2}	-0.40863			-0.26359	-0.26079
	-72.0			19.0	20.8
					$(21.2)^{e}$
1d, M, T_{1}		-0.36558			
		-45.0			
		(-41.6)			
1e, M, T_{2}		-0.35172	-0.31073		
		-36.3	$\begin{aligned} & -10.5 \\ & (-10.3) \end{aligned}$		
1f, $X,{ }^{c} S_{1} / T_{2}$	-0.35770	-0.35768	-0.27161	-0.27161	
	$\begin{aligned} & -40.0 \\ & (-59.0)^{d} \end{aligned}$	-40.0	$\begin{aligned} & 14.0 \\ & (15.2) \end{aligned}$	$\begin{aligned} & 14.0 \\ & (17.0) \end{aligned}$	
$\mathbf{1 g}, \mathrm{X}, \mathrm{T}_{1} / \mathrm{T}_{2}$	(59.0)	-0.31752	-0.31664	(
		-14.8	-14.2		
		(-11.5)	(-10.5)		
1h, $\mathrm{X}, \mathrm{S}_{0} / \mathrm{T}_{1}$	-0.36612	-0.36610			
	-45.3	-45.3			
	(-48.3)	(-47.6)			
1j, X, $\mathrm{S}_{0} / \mathrm{T}_{1}$	-0.26581	-0.26578			
	17.7	17.7			
	(3.9)	(3.2)			
11, $\mathrm{X}, \mathrm{S}_{0} / \mathrm{S}_{1}$	-0.24862			-0.24742	
	28.4			29.2	
	(42.3)			(43.7)	
1m, $\mathrm{X}, \mathrm{S}_{0} / \mathrm{S}_{1}$	-0.24467			-0.24457	
	30.9			31.0	
	(24.6)			(28.2)	

[^1]The results of ab initio CASSCF/4-31G geometry optimizations for styrene have already been published. ${ }^{8 i}$ For comparison in this study, planar structures were optimized for the S_{0} and S_{1} states of indene at the CASSCF/3-21G level. The same active space of eight electrons in eight π-orbitals was used for styrene and indene. Analytical frequency calculations were carried out at both indene geometries to establish that they are energy minima. (The frequencies have been published elsewhere. ${ }^{30}$)

Results and Discussion

The MMVB structures for styrene $\mathbf{1}$ and indene $\mathbf{2}$ presented here will be labeled sequentially $\mathbf{a}-\mathbf{m}$ (following the notation used in ref 8i).

Styrene. All of the minima and conical intersections $\mathbf{a}-\mathbf{m}$ previously characterized for the valence excited states of styrene with CASSCF ${ }^{8 i}$ have been located with MMVB. The CASSCF and MMVB optimized geometries, the gradient of T_{2} at the $\mathrm{S}_{1} /$ T_{2} crossing, and the gradient difference at the T_{2} / T_{1} conical intersection are collected in Figures 1-7. In Table 1 we give the energies of $S_{0}, T_{1}, T_{2}, S_{1}$, and S_{2} for the optimized geometries $\mathbf{a}-\mathbf{m}$. MMVB reproduces the CASSCF ordering of states at each point, and the relative energies-apart from structures with puckered benzene rings such as $\mathbf{1 j}$, 11, and $\mathbf{1 m}$-differ only by $\pm 10 \%$ or so. Experimentally, the S_{2} and

Figure 2. Styrene: MMVB gradient on T_{2} at the S_{1} / T_{2} planar crossing 1b.

1e

Figure 3. Styrene: relaxed MMVB planar triplet structures on T_{1} (1d) and T_{2} (1e). All bond lengths are in angstroms. CASSCF/4-31G measurements are from ref 8 i in parentheses. Energies are in Table 1.
S_{3} bands overlap. ${ }^{16}$ One is ionic, ${ }^{6 \mathrm{ab} \mathrm{b}}$ the other is a valence state with ionic character similar to the S_{2} state of benzene. ${ }^{8 \mathrm{~h}}$ (S_{1} is L_{b} and S_{2} is L_{a} in the Platt notation). MMVB was parametrized from CASSCF/4-31G calculations, and it appears from Table 1 that both methods overestimate the relative energies for styrene S_{2} equally.

Figures 1 and 3 show that the nature of the geometry changes on $0-0$ excitation are correctly reproduced by MMVB. In S_{1} (1b) this involves uniform benzene-like ${ }^{8 h}$ ring expansion together with a small butadiene-like ${ }^{14 \mathrm{c}}$ increase in ethylene bond length and decrease in the ethylene-benzene bond length. All of these changes have been identified from the sharp absorption and fluorescence spectra ${ }^{14}$ of the near-vertical ${ }^{15 a} S_{0} \rightarrow S_{1}$ transition.

Table 1 shows that the MMVB S_{1} and T_{2} states are approximately degenerate at $\mathbf{1 b}$. Since $\mathbf{1 b}$ is a minimum on S_{1}, it is also a minimum on an $(n-1)$ dimensional $\mathrm{S}_{1} / \mathrm{T}_{2}$ surface crossing and spin-forbidden decay may eventually take place. This is consistent with the experimental observation that a nonradiative decay path operates in styrene at $77 \mathrm{~K}^{13 \mathrm{a}, \mathrm{b}, 1 \mathrm{la}}$ and that the measured quantum yield for ISC at 298 K is $\sim 0.5 .{ }^{13 \mathrm{c}, 1 \mathrm{~b}}$ The MMVB gradient on T_{2} at $\mathbf{1 b}$ is shown in Figure 2 and is identical with the CASSCF gradient. ${ }^{8 i}$ It consists of ethylene expansion and anti-quinoid ring distortion, pointing toward the T_{2} minimum 1 e .

The diffuse absorption of $\mathrm{S}_{2}{ }^{15}$ suggests that rapid IC to S_{1} takes place. MMVB and CASSCF ${ }^{8 i}$ both find that the S_{2} and S_{1} states are almost degenerate at the S_{2} planar minimum 1c (Table 1), suggesting that barrierless IC to S_{1} can take place after initial excitation to S_{2}. Subsequent pathways on S_{1} lead either to the planar minimum 1b or a twisted minimum $\mathbf{1 f}$ (Figure 4) with a quinoid ring structure. ${ }^{5,17}$ The energy difference between $\mathbf{1 b}$ and $\mathbf{1 f}$ is effectively the barrier height for adiabatic isomerization on S_{1} and is $14 \mathrm{kcal} \mathrm{mol}^{-1}$ with

Figure 4. Styrene: MMVB twisted minimum on $S_{1}(\mathbf{1 f}), T_{2} / T_{1}$ conical intersection (1g), and T_{0} / S_{1} crossing (1h). All bond lengths are in angstroms. CASSCF/4-31G measurements are from ref 8 i in parentheses. Energies are in Table 1.

Figure 5. Styrene: MMVB gradient difference vector at the T_{2} / T_{1} conical intersection $\mathbf{1 g}$.

MMVB and $17 \mathrm{kcal} \mathrm{mol}^{-1}$ with CASSCF/4-31G. Both methods show that the $S_{1} \rightarrow S_{0}$ gap at $\mathbf{1 f}$ is too large (see Computational Details section and ref 9 h) for IC to be likely at this point (although S_{1} and T_{2} are degenerate, suggesting that ISC may take place $\left.{ }^{8,13 c}\right)$.

Figure 2 shows that the T_{1} and T_{2} planar minima are well reproduced at the MMVB level with the exception of the change in ethylene bond length. This may be due to a small imbalance in the parametrization of MMVB when the VB interaction is weak, leading to a bond length nearer to the MM minimum for a $\mathrm{C}-\mathrm{C}$ single bond. However, both MMVB and CASSCF suggest that $\mathbf{1 e}$ is not the lowest energy point on the T_{2} surface, which is instead a T_{2} / T_{1} conical intersection $\mathbf{1 g}$ (Figure 4 and Scheme 1). Both methods find that the derivative coupling and gradient difference vectors are parallel at this geometry, which means that the crossing is effectively $(n-1)$ dimensional ${ }^{8 i}$ at this point. The direction that lifts the degeneracy at $\mathbf{1 g}$ is shown in Figure 5; there is no component of rotation about the ethylene or ethylene-benzene bonds but uniform ring and ethylene expansion.

The energy difference between spectroscopic and relaxed T_{1} states in styrene is known to be about $10 \mathrm{kcal} \mathrm{mol}^{-1} .{ }^{31 \mathrm{a}-\mathrm{e}}$ MMVB underestimates this difference but correctly finds a $\mathrm{T}_{1} /$ S_{0} crossing 1h (Figure 4 and Scheme 1) at a perpendicular geometry to be the lowest energy point on T_{1}. This is consistent with the observed lack of phosphorescence from $\mathrm{T}_{1}{ }^{13 \mathrm{a}, \mathrm{b}}$

There is an additional T_{1} / S_{0} crossing $\mathbf{1 j}$ similar to the one previously located in benzene, ${ }^{28 \mathrm{~b}}$ which is illustrated in Figure 6. Although the MMVB and CASSCF geometries are in good agreement ($\pm 0.02 \AA$), MMVB overestimates the energy of this structure relative to $\mathbf{1 b}$ by $14 \mathrm{kcal} \mathrm{mol}^{-1}$ compared with CASSCF. The relative energy of the $\mathrm{S}_{1} / \mathrm{S}_{0}$ intersections $\mathbf{1 1}$ and $\mathbf{1 m}$ are also overestimated by a similar amount, although the geometries are good. MMVB overestimating CASSCF energies
1j

Figure 6. Styrene: MMVB benzene-like $\mathrm{T}_{1} / \mathrm{S}_{0}$ intersection $\mathbf{1 j}$. All bond lengths are in angstroms. CASSCF/4-31G measurements are from ref 8 i in parentheses. Energies are in Table 1.

1m

Figure 7. Styrene: MMVB S_{1} / S_{0} conical intersection structures 11 and $\mathbf{1 m}$. All bond lengths are in angstroms. CASSCF/4-31G measurements are from ref 8 i in parentheses. Energies are in Table 1.
points to a deficiency in part of the parametrization, but the CASSCF values themselves for $\mathbf{1} \mathbf{j} \mathbf{- 1 m}$ are also overestimates; in benzene, the energy difference between planar S_{1} minimum and S_{1} / S_{0} conical intersection resembling $\mathbf{1 m}$ was calculated to be $23 \mathrm{kcal} \mathrm{mol}^{-1}$ with CASSCF/4-31G, compared with the experimental activation energy of $8 \mathrm{kcal} \mathrm{mol}{ }^{-1}\left(3000 \mathrm{~cm}^{-1}\right)$.

Indene. Indene $\mathbf{2}^{21-25}$ and styrene $\mathbf{1}$ contain the same chromophores, but in the former the $\mathrm{C}=\mathrm{C}$ bond is prevented from twisting by being incorporated into a five-membered ring. This leads to qualitative differences in the photochemical decay mechanisms (aside from the possibility of rearrangement in indene).

The MMVB planar singlet and triplet indene structures $\mathbf{2 a}-$ 2e illustrated in Figures 8-10 show very similar structural changes to styrene $\mathbf{1 a}-\mathbf{1 e}$ on excitation. (CASSCF computations have been performed only for the S_{0} and S_{1} minima.) The vertical nature of the $S_{0} \rightarrow S_{1}$ transition is consistent with structured absorption/fluorescence and the observation of the $0-0$ band at $77 \mathrm{~K} .{ }^{13 \mathrm{a}}$ Structure 2b is a minimum on $\mathrm{S}_{1}{ }^{30}$ and also a minimum on the S_{1} / T_{2} intersection with a gradient on T_{2} (Figure 9) identical with that of styrene (Figure 2).

As with styrene, decay from S_{1} to T_{2} may compete with fluorescence. In indene, however, the $\mathrm{T}_{2} / \mathrm{T}_{1}$ conical intersection $\mathbf{2 g}$ is over $22 \mathrm{kcal} \mathrm{mol}^{-1}$ above $\mathbf{2 b}$, whereas $\mathbf{1 g}$ is $14 \mathrm{kcal} \mathrm{mol}^{-1}$ below $\mathbf{1 b}$ in styrene. This is a result of twisting in the fivemembered ring being hindered, which must be offset by an antiquinoid ring distortion leading to crossing at a much higher energy on the $\mathrm{T}_{2} / \mathrm{T}_{1}$ intersection seam. Accelerated $\mathrm{T}_{2} \rightarrow \mathrm{~T}_{1}$ decay via such a crossing is therefore unlikely in indene, and the Fermi golden rule is a better description of this process. The derivative coupling and gradient difference vectors at $\mathbf{2 g}$ are illustrated in Figure 12 and are no longer parallel as in styrene ($\mathbf{1 g}$). Because ethylene twisting is suppressed, no twisted S_{1} minimum ${ }^{5}$ could be located in indene. Searches for a twisted S_{1} / T_{2} crossing resembling $1 f$ always led the planar $\mathrm{S}_{1} / \mathrm{T}_{2}$ crossing 2b.

The planar structure $\mathbf{2 d}$ is the lowest energy point on the indene T_{1} surface. This is consistent with the fact that the

Figure 8. Indene: relaxed MMVB planar singlet structures on $S_{0}(\mathbf{2 a})$, $\mathrm{S}_{1}(\mathbf{2 b})$, and $\mathrm{S}_{2}(\mathbf{2 c})$. All bond lengths are in angstroms. CASSCF/321 G measurements in parentheses. Energies are in Table 2.

Figure 9. Indene: MMVB gradient on T_{2} at the S_{1} / T_{2} planar crossing 2b.

Figure 10. Indene: relaxed MMVB planar triplet structures on T_{1} (2d) and $\mathrm{T}_{2}(\mathbf{2 e})$. All bond lengths are in angstroms. Energies are in Table 2.
spectroscopic and relaxed energies for T_{1} are identical, ${ }^{31 a, b}$ in contrast to styrene. The geometry for ISC via a surface-crossing mechanism-the $\mathrm{T}_{1} / \mathrm{S}_{0}$ crossing point $\mathbf{2 h}$-is over $30 \mathrm{kcal} \mathrm{mol}^{-1}$ higher in energy and unlikely to be accessible. Caldwell has further shown ${ }^{31 \mathrm{c}}$ that T_{1} decay is unaffected by heavy atom substituents and that ISC is inefficient, leading to a microsecond lifetime.

The broad S_{2} absorption of indene implies rapid IC to $S_{1},{ }^{24}$ which accords with the S_{2} indene minimum 2c being a point on the S_{2} / S_{1} intersection (as with styrene). Subsequent rapid $\mathrm{S}_{1} / \mathrm{S}_{0}$ IC explains the lack of S_{1} fluorescence after exciting indene to S_{2} in the gas phase, ${ }^{25}$ since vibrationally excited S_{1} indene can decay at one of four $\mathrm{S}_{1} / \mathrm{S}_{0}$ conical intersections $\mathbf{2 m I}$ $\mathbf{2 m I V}$ (Figure 13) resembling 1m. A conical intersection like

TABLE 2: Indene MMVB Energies/ $\boldsymbol{E}_{\mathrm{h}}$ (Top Line) at MMVB Optimized Geometries ${ }^{a}$

structure	S_{0}	T_{1}	T2	S_{1}	S_{2}
2a, M, ${ }^{\text {b }} \mathrm{S}_{0}$	-0.43267	-0.34699	-0.28184	-0.27609	-0.21382
	-93.8	-40.0	0.9	4.5	43.6
2b, M, S_{1}	-0.42528	-0.34968	-0.28552	-0.28324	
	-89.1	-41.7	-1.4	0.0	
2c, M, S ${ }_{2}$	-0.40199			-0.25618	-0.25549
	-74.5			17.0	17.4
2d, M, T_{1}		$\begin{aligned} & -0.35488 \\ & -45.0 \end{aligned}$			
2e, M, T_{2}		$\begin{aligned} & -0.34235 \\ & -37.1 \end{aligned}$	$\begin{aligned} & -0.30151 \\ & -11.5 \end{aligned}$		
$\mathbf{2 g}, \mathrm{X},{ }^{c} \mathrm{~T}_{1} / \mathrm{T}_{2}$		$\begin{aligned} & -0.24843 \\ & 21.8 \end{aligned}$	$\begin{aligned} & -0.24670 \\ & 22.9 \end{aligned}$		
2h, $\mathrm{X}, \mathrm{S}_{0} / \mathrm{T}_{1}$	$\begin{aligned} & -0.30392 \\ & -13.0 \end{aligned}$	$\begin{aligned} & -0.30389 \\ & -13.0 \end{aligned}$			
2mI, $\mathrm{X}, \mathrm{S}_{0} / \mathrm{S}_{1}$	$\begin{aligned} & -0.22078 \\ & 39.2 \end{aligned}$			$\begin{aligned} & -0.22077 \\ & 39.2 \end{aligned}$	
$\underset{\mathrm{S}_{0} / \mathrm{S}_{1}}{2 \mathrm{mII}, \mathrm{X}}$	-0.22140			-0.22134	
	38.8			38.8	
$\underset{S_{0} / S_{1}}{2 \mathrm{mIII}, X,}$	-0.21827			-0.21825	
	40.8			40.8	
$\underset{\mathrm{S}_{0} / \mathrm{S}_{1}}{\mathbf{2 m I V}, \mathrm{X}}$	-0.22384			-0.22370	
	37.2			37.4	

${ }^{a}$ Indene MMVB geometries are shown in Figures 8-13. Energies are relative to the indene planar S_{1} minimum $\mathbf{2 b} / \mathrm{kcal} \mathrm{mol}^{-1}$ (bottom line). ${ }^{b} \mathrm{M}=$ planar minimum. ${ }^{c} \mathrm{X}=$ surface crossing.

Figure 11. Indene: $M M V B T_{2} / T_{1}$ conical intersection ($\mathbf{2 g}$) and T_{0} / S_{1} crossing (2h). All bond lengths are in angstroms. Energies are in Table 2.
styrene $\mathbf{1 1}$ could not be located for indene. However, such a crossing may be important in the S_{1} decay of benzocycloalkadienes with larger rings, e.g., benzocyclooctadiene, ${ }^{13 \mathrm{a}}$ in which the ethylene group is twisted with respect to the ring by an angle approaching 90°, promoting IC. ${ }^{33}$

Conclusion

The topology of the excited-state potential energy surfaces for styrene predicted by MMVB and CASSCF is identical. Both

Figure 12. Indene: MMVB derivative coupling (top) and gradient difference (bottom) vectors at the $\mathrm{T}_{2} / \mathrm{T}_{1}$ conical intersection $\mathbf{2 g}$.

Figure 13. Indene: $\mathrm{MMVB} \mathrm{S}_{1} / \mathrm{S}_{0}$ conical intersection structures $\mathbf{2 m I}$ 2mIV. All bond lengths are in angstroms. Energies are in Table 1.
mechanisms set out in Scheme 1 for S_{1} decay could have been deduced without CASSCF calculations, which are many orders of magnitude more expensive computationally. In particular, both methods suggest that the energy gap at a twisted S_{2}-like structure on $\mathrm{S}_{1}{ }^{5}$ is too large for IC to be likely.

For indene, the five-membered ring restricts the torsions that are required for the nonradiative deactivation of S_{1} via S_{1} / T_{2}, $\mathrm{T}_{2} / \mathrm{T}_{1}$, and $\mathrm{T}_{1} / \mathrm{S}_{0}$ surface crossings. MMVB predicts that a $\mathrm{T}_{2} /$ T_{1} conical intersection is inaccessible. The existence of both $\mathrm{S}_{2} / \mathrm{S}_{1}$ and $\mathrm{S}_{1} / \mathrm{S}_{0}$ conical intersections is consistent with the lack of fluorescence observed after exciting indene to S_{2} in the gas phase and suggests that rearrangement reactions may be due to vibrationally excited $\mathrm{S}_{0}{ }^{*}$.

Acknowledgment. This research has been supported in part by the SERC (U.K.) under Grant No, GR/J25123 and GR/ H58070. Ab initio computations were run on an IBM RS/6000 using a development version of the Gaussian 94 program. ${ }^{29}$

References and Notes

(1) (a) Lewis, F. D.; Bassani, D. M. J. Am. Chem. Soc. 1993, 115, 7523-7524. (b) Lewis, F. D.; Bassani, D. M.; Caldwell, R. A.; Unett, D. J. J. Am. Chem. Soc. 1994, 116, 10477-10485.
(2) (a) Saltiel, J.; Sun, Y.-P. In Photochromism: Molecules and Systems; Dürr, H., Bouas-Laurent, H., Eds.; Elsevier: Amsterdam, 1990; pp 64-164. (b) Sension, R. J.; Repinec, S. T.; Szarka, A. Z.; Hochstrasser, R. M. J. Chem. Phys. 1993, 98, 6291-6315. (c) Szarka, A. S.; Pugliano, N.; Palit, D. K.; Hochstrasser, R. M. Chem. Phys. Lett. 1995, 240, 25-30. (d) Saltiel, J.; Waller, A.; Sun, Y.-P.; Sears, D. F. J. Am. Chem. Soc. 1990, 112, 4580-4581. (e) Saltiel, J.; Waller, A. S.; Sears, D. F. J. Am. Chem. Soc. 1993, 115, 2453-2465. (f) Petek, H.; Yoshihara, K.; Fujiwara, Y.;

Lin, Z.; Penn, J. H.; Frederick, J. H. J. Phys. Chem. 1990, 94, 7539-7543. (g) Bañares, L.; Heikal, A. A.; Zewail, A. H. J. Phys. Chem. 1992, 96, 4127-4130.
(3) (a) Allen, M. T.; Whitten, D. G. Chem. Rev. (Washington, D.C.) 1989, 89, 1691-1702. (b) Morris, D. L.; Gustafson, T. L. J. Phys. Chem. 1994, 98, 6725-6730. (c) Itoh, T.; Kohler, B. E.; Spangler, C. W. Spectrochim. Acta, Part A 1994, 50, 2261-2263.
(4) (a) Udayakumar, B. S.; Devadoss, C.; Schuster, G. B. J. Phys. Chem. 1993, 97, 8713-8717. (b) Ma, J. S.; Dutt, G. B.; Waldeck, D. H.; Zimmt, M. B. J. Am. Chem. Soc. 1994, 116, 10619-10629. (c) Lenderink, E.; Duppen, K.; Wiersma, D. A. J. Phys. Chem. 1995, 99, 8972-8977.
(5) (a) Orlandi, G.; Siebrand, W. Chem. Phys. Lett. 1975, 30, 352354. (b) Hohlneicher, G.; Dick, B. J. Photochem. 1984, 27, 215-231. (c) Mich1, J.; Klessinger, M. Excited States and Photochemistry of Organic Molecules; VCH: New York, 1995; pp 369-372.
(6) (a) Said, M.; Malrieu, J. P. Chem. Phys. Lett. 1983, 102, 312316. (b) Hemley, R. J.; Dinur, U.; Vaida, V.; Karplus, M. J. Am. Chem. Soc. 1985, 107, 836-844. (c) Troe, J.; Weitzel, K.-M. J. Chem. Phys. 1988, 88, 7030-7039. (d) Negri, F.; Orlandi, G.; Zerbetto, F. J. Phys. Chem. 1989, 93, 5124-5128.
(7) (a) Bendazzoli, G. L.; Orlandi, G.; Palmieri, P.; Poggi, G. J. Am. Chem. Soc. 1978, 100, 392-395. (b) Nebot-Gil, I.; Malrieu, J.-P. Chem. Phys. Lett. 1981, 84, 571-574. (c) Orlandi, G.; Palmieri, P.; Poggi, G. J. Am. Chem. Soc. 1979, 101, 3492-3497.
(8) (a) Bernardi, F.; De, S.; Olivucci, M.; Robb, M. A. J. Am. Chem. Soc. 1990, 112, 1737-1744. (b) Bernardi, F.; Olivucci, M.; Robb, M. A. Acc. Chem. Res 1990, 23, 405-412. (c) Bernardi, F.; Olivucci, M.; Robb, M. A.; Tonachini, G. J. Am. Chem. Soc. 1992, 114, 5805-5812. (d) Olivucci, M.; Ragazos, I. N.; Bernardi, F.; Robb, M. A. J. Am. Chem. Soc. 1993, 115, 3710-3721. (e) Celani, P.; Bernardi, F.; Olivucci, M.; Robb, M. A. J. Chem. Phys. 1995, 102, 5733-5742. (f) Olivucci, M.; Bernardi, F.; Ragazos, I.; Robb, M. A. J. Am. Chem. Soc. 1994, 116, 1077-1085. (g) Celani, P.; Garavelli, M.; Ottani, S.; Bernardi, F.; Robb, M. A.; Olivucci, M. J. Am. Chem. Soc. 1995, 117, 11584-11585. (h) Palmer, I. J.; Ragazos, I. N.; Bernardi, F.; Olivucci, M.; Robb, M. A. J. Am. Chem. Soc. 1993, 115, 673-682. (i) Bearpark, M. J.; Olivucci, M.; Wilsey, S.; Bernardi, F.; Robb, M. A. J. Am. Chem. Soc. 1995, 117, 6944-6953. (j) Bearpark, M. J.; Bernardi, F.; Clifford, S.; Olivucci, M.; Robb, M. A.; Smith, B. R.; Vreven, T. J. Am. Chem. Soc. 1996, 118, 169-175. (k) Bearpark, M. J.; Bernardi, F.; Olivucci, M.; Robb, M. A.; Smith, B. R. J. Am. Chem. Soc. 1996, 118, 5254-5260. (1) Bearpark, M. J.; Bernardi, F.; Olivucci, M.; Robb, M. A.; Clifford, S.; Vreven, T. Mol. Phys. 1996, 89, 37-46.
(9) A conical intersection is an $(n-2)$ dimensional subspace of n nuclear coordinates in which two states are degenerate. Movement along the two remaining linearly independent nuclear coordinates (the nonadiabatic coupling and gradient difference vectors) lifts the degeneracy. (a) Teller, E.; J. Phys. Chem. 1937, 41, 109. (b) Kauzmann, W. Quantum Chemistry; Academic Press: New York, 1957; pp 696-697. (c) Herzberg, G.; LonguettHiggins, H. C. Discuss. Faraday. Soc. 1963, 35, 77. (d) Herzberg, G. The Electronic Spectra of Polyatomic Molecules; Van Nostrand: Princeton, 1966; p 442. (e) Teller, E. Isr. J. Chem. 1969, 7, 227-235. (f) LonguetHiggins, H. C. Proc. R. Soc. London, Ser. A 1975, 344, 147-156. (g) Stone, A. J. Proc. R. Soc. London, Ser. A 1976, 351, 141-150. (h) Salem, L. Electrons in Chemical Reactions: First Principles; Wiley: New York, 1982; pp 148-153. (i) Bonacic-Koutecky, V.; Koutecky, J.; Michl, J. Angew. Chem., Int. Ed. Engl. 1987, 26, 170-189. (j) Keating, S. P.; Mead, C. A. J. Chem. Phys. 1987, 86, 2152-2160. (k) Mead, C. A. Rev. Mod. Phys. 1992, 64, 51-85. (1) Atchity, G. J.; Xantheas, S. S.; Ruedenberg, K. J. Chem. Phys. 1991, 95, 1862-1876. (m) Manthe, U.; Köppel, H. J. Chem. Phys. 1990, 93, 1658-1669. (n) Schon, J.; Köppel, H. J. Chem. Phys. 1995, 103, 9292-9303. (o) Klessinger, M. Angew. Chem., Int. Ed. Engl. 1995, 34, 549-551. (p) Desouter-Lecomte, M.; Lorquet, J. C. J. Chem. Phys. 1977, 71, 4391. (q) Michl, J.; Klessinger, M. Excited States and Photochemistry of Organic Molecules; VCH: New York, 1995. (r) Michl, J.; Bonacic-Koutecky, V. Electronic Aspects of Organic Photochemistry; Wiley: New York, 1990. (s) Gilbert, A.; Baggot, J. Essentials of Molecular Photochemistry; Blackwell: London, 1991.
(10) (a) Michl, J. Pure Appl. Chem. 1975, 41, 507-534. (b) Gerhartz, W.; Poshusta, R. D.; Michl, J. J. Am. Chem. Soc. 1976, 98, 6427-6443. (c) Gerhartz, W.; Poshusta, R. D.; Michl, J. J. Am. Chem. Soc. 1977, 99, 4263-4271.
(11) Van der Lugt, W. T. A. M.; Oosterhoff, L. J. J. Am. Chem. Soc. 1969, 91, 6042.
(12) (a) Rockley, M. G.; Salisbury, K. J. Chem. Soc., Perkin Trans. 2 1973, 1582-1585. (b) Steer, R. P.; Swords, M. D.; Crosby, P. M.; Phillips, D.; Salisbury, K. Chem. Phys. Lett. 1976, 43, 461-464. (c) Ghiggino, K. P.; Phillips, D.; Salisbury, K.; Swords, M. D. J. Photochem. 1977, 7, 141146. (d) Ghiggino, K. P.; Hara, K.; Salisbury, K.; Philips, D. J. Photochem. 1978, 8, 267-271. (e) Ghiggino, K. P.; Hara, K.; Mant, G. R.; Phillips, D.; Salisbury, K.; Steer, R. P.; Swords, M. D. J. Chem. Soc., Perkin Trans. 2 1978, 88-91. (f) Crosby, P. M.; Dyke, J. M.; Metcalfe, J.; Rest, A. J.; Salisbury, K.; Sodeau, J. R. J. Chem. Soc., Perkin Trans. 2 1977, 182185.
(13) (a) Lyons, A. L.; Turro, N. J. J. Am. Chem. Soc. 1978, 100, 31773181. (b) Condirston, D. A.; Laposa, J. D. Chem. Phys. Lett. 1979, 63, 313-317. (c) Bonneau, R. J. Am. Chem. Soc. 1982, 104, 2921-2923.
(14) (a) Hollas, J. M.; Ridley, T. J. Mol. Spectrosc. 1981, 89, 232253. (b) Hollas, J. M.; Musa, H.; Ridley, T.; Turner, P. H.; Weisenberger, K. H.; Fawcett, V. J. Mol. Spectrosc. 1982, 94, 437-455. (c) Syage, J. A.; Al Adel, F.; Zewail, A. H. Chem. Phys. Lett. 1983, 103, 15-22. (d) Seeman, J. I.; Grassian, V. H.; Bernstein, E. R. J. Am. Chem. Soc. 1988, 110, 85428543. (e) Grassian, V. H.; Bernstein, E. R.; Secor, H. V.; Seeman, J. I. J. Phys. Chem. 1989, 93, 3470-3474. (f) Condirston, D. A.; Laposa, J. D. J. Lumin. 1978, 16, 47-59.
(15) (a) Hemley, R. J.; Leopold, D. G.; Vaida, V.; Karplus, M. J. Chem. Phys. 1985, 82, 5379-5397. (b) Zeigler, L. D.; Varotsis, C. Chem. Phys. Lett. 1986, 123, 175-181. (c) Hemley, R. J.; Leopold, D. G.; Vaida, V.; Roebber, J. L. J. Phys. Chem. 1981, 85, 134-135. (d) Leopold, D. G.; Hemley, R. J.; Vaida, V.; Roebber, J. L. J. Chem. Phys. 1981, 75, 47584769.
(16) Swiderek, P.; Fraser, M.-J.; Michaud, M.; Sanche, L. J. Chem. Phys. 1994, 100, 70-77.
(17) Hui, M. H.; Rice, S. A. J. Chem. Phys. 1974, 61, 833-842.
(18) (a) Drescher, W.; Kendler, S.; Zilberg, S.; Zingher, E.; Zuckermann, H.; Haas, Y. I. J. Chem. Phys. 1994, 101, 11082-11083. (b) Zilberg, S.; Haas, Y. J. Chem. Phys. 1995, 103, 20-36.
(19) Smith, B. R.; Bearpark, M. J.; Robb, M. A.; Bernardi, F.; Olivucci, M.; Chem. Phys. Lett. 1995, 242, 27-32.
(20) (a) Bernardi, F.; Olivucci, M.; Robb, M. A. J. Am. Chem. Soc. 1992, 114, 1606-1616. (b) Bearpark, M. J.; Bernardi, F.; Olivucci, M.; Robb, M. A. Chem. Phys. Lett. 1994, 217, 513-519.
(21) Kendler, S.; Zilberg, S.; Haas, Y. Chem. Phys. Lett. 1995, 242, 139-146.
(22) Heckman, R. C. J. Mol. Spectrosc. 1958, 2, 27.
(23) (a) Harrigan, E. T.; Hirota, N. Chem. Phys. Lett. 1973, 22, 29. (b) Brocklehurst, B.; Tawn, D. N. Spectrochim. Acta, Part A 1974, 30, 1807. (c) Harrigan, E. T.; Hirota, N. J. Am. Chem. Soc. 1975, 97, 6647.
(24) Byrne, J. P.; Ross, I. G. Aust. J. Chem. 1971, 24, 1107.
(25) Suarez, M. L.; Duguid, R. J.; Morrison, H. J. Am. Chem. Soc. 1989, 111, 6384-6391.
(26) Allinger, N. L. Adv. Phys. Org. Chem. 1976, 13, 1.
(27) (a) Anderson, P. W. Phys. Rev. 1959, 115, 2. (b) Said, M.; Maynau, D.; Malrieu, J.-P.; Bach, M.-A. G. J. Am. Chem. Soc. 1984, 106, 571579. (c) Said, M.; Maynau, D.; Malrieu, J.-P. J. Am. Chem. Soc. 1984, 106, 580-587. (d) Durand, P.; Malrieu, J.-P. Adv. Chem. Phys. 1987, 67, 321-412.
(28) (a) Ragazos, I. N.; Robb, M. A.; Bernardi, F.; Olivucci, M. Chem. Phys. Lett. 1992, 197, 217-223. (b) Bearpark, M. J.; Robb, M. A.; Schlegel, H. B. Chem. Phys. Lett. 1994, 223, 269-274.
(29) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T. A.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Reploge, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; HeadGordon, M.; Gonzales, C.; Pople, J. A. Gaussian 94; Gaussian, Inc.: Pittsburgh, 1995.
(30) Yamamoto, N.; Vreven, T.; Robb, M. A.; Frisch, M. J.; Schlegel H. B. Chem. Phys. Lett. 1996, 250, 373-378.
(31) (a) Unett, D. J.; Caldwell, R. A. Res. Chem. Intermed. 1995, 21, 665-709. (b) Ni, T.; Caldwell, R. A.; Melton, L. A. J. Am. Chem. Soc. 1989, 111, 457-464. (c) Caldwell, R. A.; Jacobs, L. D.; Furlani, T. R.; Nalley, E. A.; Laboy, J. J. Am. Chem. Soc. 1992, 114, 1623-1625. (d) Arai, T.; Tokumaru, K. Chem. Rev. (Washington, D.C.) 1993, 93, 23. (e) Bonneau, R.; Herran, B. Laser Chem. 1984, 4, 151-170. (f) Bonneau, R. J. Photochem. 1979, 10, 439-449. (g) Görner, H. J. Phys. Chem. 1989, 93, 1826-1832.
(32) Wagner, B. D.; Szymanski, M.; Steer, R. P. J. Chem. Phys. 1993, 98, 301-307.
(33) Zimmerman, H. E.; Kamm, K. S.; Werthermann, D. P. J. Am. Chem. Soc. 1975, 97, 3718-3725.

[^0]: \dagger King's College London.
 \ddagger 'G. Ciamician' dell' Universitá di Bologna.
 ${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, October 1, 1997.

[^1]: ${ }^{a}$ Styrene MMVB geometries are shown in Figures 1-7. Energies are relative to the styrene planar S_{1} minimum $\mathbf{1 b} / \mathrm{kcal} \mathrm{mol}^{-1}$ (middle line). Relative energies are calculated at the CASSCF/4-31G level for optimized geometries taken from ref $8 \mathrm{i} / \mathrm{kcal} \mathrm{mol}^{-1}$ (bottom line). ${ }^{b} \mathrm{M}$ $=$ planar minimum. ${ }^{c} \mathrm{X}=$ surface crossing. ${ }^{d} 6-31 \mathrm{G}^{*}$ value. ${ }^{8 \mathrm{i}}{ }^{e}$ Further optimization at CASSCF/4-31G level ${ }^{8 i}$ leads to a slightly twisted $\mathrm{S}_{2} / \mathrm{S}_{1}$ intersection with roots $19.0\left(\mathrm{~S}_{0}\right)$ and $22.0\left(\mathrm{~S}_{1}\right) \mathrm{kcal} \mathrm{mol}^{-1}$ above the S_{1} planar minimum 1b.

